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An account is given of the theory of elasto-plastic problems in soil mechanics. Solution by the method
of successive approximations combined with a network method is described.

‘ ‘Deformations in foundation soils are now found by applying the theory of linear deformations, which is valid only
for a linear stress-strain relationship.

Experimental investigation of the deformation properties of various soils indicates that the dependence of strain on
stress is generally nonlinear [1-3]. Elastic deformation is always accompanied by plastic deformation, which often ex-
ceeds the former by a factor of ten.

Accordingly, the deformations of foundation soils should, in general, be found by applying the elasto-plastic, not
the linear theory.

1 propose to use the theory of small elasto-plastic deformations to determine the deformations of morainic founda-
tion soils due to external loading.

According to this theory, the method of solution of such problems reduces to the simultaneous examination of the
statical and physical equations, the geometrical relationships, the expressions for stress and strain intensity, and the de-
pendence of strain on stress, Thus, in solving problems in the theory of plasticity, at every point of the deformed body
it is necessary to satisfy 18 equations, besides the boundary equations [4].

I1"yushin [5] has developed a special method, called the "method of elastic solutions, ™ for solving problems involv-
ing the theory of small elasto-plastic deformations; it allows the plastic problem to be reduced to the successive solution
of equations analogous to the Lamé equations in glasticity theory, with given boundary conditions. The solution of these
equations, while fulfilling the boundary conditions, is very difficult, however. Therefore, in integrating the analogous
equations in elasticity problems it is usual to employ the reverse method, assigning the displacements, as functions of the
coordinates of the point, and on the basis of the boundary conditions determining the external forces acting at the surface
of the body which the given displacements satisfy, The Saint-Venant method can also be used. In this case only part of
the external forces and part of the displacements are assigned, and the remaining factors are found from the Lamé equa-
tions and the boundary conditions. Both these methods of solving elastic problems are inapplicable to the solution of
problems of plasticity by the method of elastic solutionsa

A simpler method of solving problems of plasticity is, I think, solution by the method of finite differences [6]. Es-
sentially, this replaces the partial differential equations by partial difference equations, while the operator expressions
linear with respect to derivatives correspond to expressions linear with respect to differences. As a result, the partial dif-
ferential equations are replaced by a system of linear algebraic equations, in which the unknowns are values of the func-
tion at the nodes of the assumed type of network, the number of unknowns depending on the number of intermediate nodes
of the network approximating the region being studied.

Equations of the Lamé type, which describe the elasto-plastic deformation of soils without taking volume forces
into account, may be represented for points i, j, k (Fig. 1) in finite differences as follows:
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where the following values are assumed for the first equation:
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Values for the second and third equations of (1) may be obtained from the rule of circular permutation. At any

point of the elasto-plastic region, in the solution by the method of elastic solutions the relation between stress component
and strain components is expressed by
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Equations (2) are valid not enly for internal points in the region examined, but also for edge points, the stress com-
ponents at the edges necessarily conforming to the given boundary conditions. Equations (2) may be written in finite dif-

ferences for points i, j, k (Fig.

2, a, b) as follows:
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For points at the edge of the region examined, both equations (3) and the surface conditions must be satisfied:
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Fig. 2. Network for stress components at the edges:
a — for points located on plane xoz, b — on plane yoz
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- The values of expressions R, and R, may be determined
from the rule of circular permutation. Therefore, equating
(8) to surface conditions (4), we obtain a new system of equa-
tions, relating the internal stresses in the region examined
with the edge conditions.

In solving elasto-plastic problems by the method of
elastic solutions, we assume w = 0 in the first approximation,
i.e., we have the ordinary problem of the theory of elasticity,
the solution of which, for given boundary conditions, may be
obtained in closed form.

To solve elasto-plastic problems in the second approxi-
mation, it is first necessary to express the displacements of
edge points of the network region in terms of displacements
of the internal points adjacent to the edges and the boundary
conditions, i.e., to include the unknown edge displacements
in the overall iteration procedure.



We shall assume that at the surface of an elasto -plastic half-space a local load acts; this load can be resolved into
a normal load oy and tangential components TXy, 'ryz. Bounding the half-space by planes, and applying along these
planes normal and tangential loads, corresponding to the internal stresses at the same poinrs of the half- -space, calcu-
lated from (4), we obtain the basic calculation scheme (Fig. 3). Fig. 3 shows the upper boundary points of the basic
calculation scheme, and the internal network nodes adjacent to them. Loads acting along the edges of the network
region are reduced to uniformly distributed loads relative to the edge node points of the network.
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Fig. 3. Upper part of basic calculation scheme.

In view of the considerable number of unknowns
in (9), it is recommended that an electronic computer

be used in the solution.

To construct the equations relating edge stresses to dis-
placements of the edge points and displacements of the adjacent
internal points (equations (3)), it is necessary to work around the
network region systematically. The displacements of the corner
points of the network region are expressed by the displacements
of the adjoining edge points of the network.

To determine the displacements of the internal points of
the assumed type of network, it is necessary, for each internal
node point, to write down expressions in accordance with (1) for
the components of the displacements as functions of the displace-
ments of the adjacent points. The displacements of the edge
points entering into these expressions must be represented as func-
tions of the displacements of the adjacent internal points of the
network and of the edge stresses, the edge displacements being
included in the general iteration process.

Therefore, the problem of determining the displacements
of the nodes of the network region reduces to the solution of a
system of equations which can be represented in the canonical
form:
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In solving preblems in soil mechanics by the method of elastic solutions, sufficient accuracy can be obtained with
the second approximation. If need be, however, this method may also be used, in conjunction with the network method,
for solving elasto~plastic problems in the third and subsequent approximations. The method of solution of such problems
is analogous to the method of solving elasto-plastic problems in the second approximation.

NOTATION

u, v, w — displacement components; k ~ quotient of Lamé's constants A and G; &x, Ay,
nodes of networks o — stress intensitys e; - strain intensity; €,y — mean relative elongation; ey, ey €
gations; ¥xys ¥xz Ty ~ relative shears; 0y, Oys Oys Tyys Too Ty,

components of elastlc stress; va' P v Poy

Az — distances between
- relatlve elon-

X7 — stress components; G ’ Oy, OZ,T XZ T ” -

P — surface loads for a perfectly elastic body; I, m, n — cosines of angles be-

tween corresponding axes and normal to area; aj, — coefficients of equations; Xj — unknown quantities.
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